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Abstract— In the present paper we consider the Starobinsky model of inflation, and find that it is connected to matter scalar field models with a non-
minimal coupling to gravity. We then consider quantum induced marginal deformations of the Starobinsky action, and find that such deformations signifi-
cantly shift the predicted tensor-to-scalar towards higher values. At last we discuss sources for these corrections. 
In this paper, we review inflation in modified gravity, particularly F(R) gravity, based on Ref. [33]. The deviation of F(R) gravity from general relativity may 
be interpreted as a kind of quantum corrections in the early universe, or such a modification of gravity could be motivated by the so-called ultraviolet 
(UV) completion of quantum gravity. In fact, the Starobinsky inflation [32] can be regarded as inflation induced by the modification term of R2 from gen-
eral relativity. We here attempt to examine inflation by the other forms of modification of gravity. 
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1 INTRODUCTION                                                                     

he past century has marked as the golden age of Cosmol-
ogy. Ground-breaking observations have made Cosmolo-
gy a scientific area and not a philosophical study as it 

used to be. Einstein’s theory has the remarkable property of 
being able to be applied on large (cosmological) scales. It is 
worth noting that GR could successfully explain a great part of 
observations. However, General relativity alone could not ful-
ly explain all the observational data and there were many 
questions that remained unanswered. Thus, one can imagine 
that GR might not be the end of the story. For instance, the 
late-time accelerated expansion cannot be predicted by Eins-
tein’s theory. In particular, as can be seen by the Friedmann 
equations, the expansion is always decelerated for conven-
tional matter. Therefore, the modification of Einstein’s theory 
comes into the game. In addition, more fundamental theories 
such as String Theory, predict higher order terms contributing 
to the Gravity action when the curvature is high. Thus, both 
observations and theory seem to lead to the conclusion that 
Gravity should be modified somehow. 
The standard cosmological model covers a wide class of phe-
nomena and fits the current observational tests with great suc-
cess. However, this model has problems of 1,2 the initial sin-
gularity, horizon, flatness and monopoles in the early period 
of the universe. These problems can be solved if we assume 
that the primordial universe starts with a very fast expansion, 
denominated inflation by Guth in 1981.3 
An essential natural inflationary scenario is one in which infla-
tion is driven by quantum corrections to the Einstein-Hilbert 
action, suggested by Starobinsky in 1980.4 The Starobinsky 
model is based on the semi classical approach to quantum 
field theory (QFT) in curved space-time. Within this theory the 
metric is treated as a classical background for the quantum 
dynamics of the matter fields. This approach presents a consis-
tent theory at energies of a few orders of magnitude below the 
Planck scale.5,6 

In the original Starobinsky model, inflation is a consequence of 
the quantum effects of massless matter fields.4 The model as-
sumes a non-minimal conformal coupling between the scalar 
field and gravity, ξ = 1/6. In this case, the mass-less matter 
fields are conformally invariant having a traceless stress tensor 
at the classical level. However, the one-loop contributions 
create a trace anomaly which changes the dynamics of the con-
formal factor of the metric (see Refs. 4, 7, 8) and also the metric 
and density perturbations.9,10,11 An alternative option is to 
apply the effective action method, using the conformal anoma-
ly to calculate the induced effective action.6,12–15 Inflation 
naturally arises from the total action which is obtained from 
the sum of the anomaly-induced effective action to the classic-
al terms, including the Einstein-Hilbert one.16–18 
An alternative version of the Starobinsky model was proposed 
in Refs. 19, 20,21. The main advantage of this modified version 
is that inflation starts in the stable regime which is after words 
interpolating to an unstable regime at the end of infla-
tion.4,8,17 The modified Starobinsky (MSt) model is a natural 
extension of the Starobinsky model. In the MSt version, infla-
tion is due to the contribution of the quantum effects of both 
massless conformal and massive matter fields.19–21 The mas-
sive theory is not conformally invariant at the classical level 
due to the masses of the scalar and fermion fields. However, 
using a conformal description, the massive matter fields be-
come conformally invariant and we can use the conformal 
anomaly method to derive the effective action. 
The Starobinsky model is a natural inflationary scenario in 
which inflation arises due to quantum effects of the massless 
matter fields. A modified version of the Starobinsky model 
takes the masses of matter fields and the cosmological con-
stant, Λ, into account. The equations of motion become much 
more complicated however approximate analytic and numeric 
solutions are possible. In the MSt model, inflation starts due to 
the super symmetric (SUSY) particle content of the underlying 
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theory and the transition to the radiation dominated epoch 
occurs due to the relatively heavy s-particles decoupling. For 
Λ = 0 the inflationary solution is stable until the last stage, just 
before decoupling 
 
 INFLATION VIA MODIFIED GRAVITY 
This requires one to go beyond standard Einstein gravity and 
consider modified versions, for example in the context of f(R)-
theories. 
In these theories the action is, 

∫∫ +−= xdRf
M

gxdS P 4
2

4 )(
2

 LM (gµʋ , ψM )     … … … 

(1) 

Where f (R) is an arbitrary function of the Ricci scalar R and 
LM is a matter Lagrangian which is minimally coupled to 
gravity. This includes the Starobinsky model of inflation, 
which is one of the earliest models of inflation. The Staro-
binsky model features an R2-term added to the Einstein-
Hilbert action, 

2

2

6
)(

M
RRRf +=

    … … … (2) 
 

Where M is a new mass scale. We consider the Starobinsky 
model of Inflation in detail below. We begin our discussion by 
considering the field equations associated to the general ac-
tion. These may be found by varying the action with respect to 
gµʋ , 

µϑϑµµϑµϑ gRFgRfRRF +∇∇−− )()(
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P TMRF µϑ
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Where 
R

f
RF

δ
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≡)(   &   MTµϑ  is the energy-momentum tensor 

of the matter fields. We obtain the Starobinsky-Einstein equa-
tion 
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Now from equation (4) we get, 

−− )(
2
4)( RfRRF      F(R) + 4      F(R) = M

P TgM µϑ
µϑ2−  

)(2)( RfRRF −⇒ +3     F(R) =
M

P TgM µϑ
µϑ2−

    … … … (5) 

This reveals an extra propagating scalar degree of freedom ψ 
= F(R) as compared to standard Einstein gravity. We will soon 
see that this extra scalar degree of freedom may be used to 
drive inflation. In Einstein gravity the term F(R) vanishes and 

M
P TgMR µϑ

µϑ2−−=  such that the Ricci scalar is determined by the 

matter content in the standard manner. 
 
In the following we consider vacuum solutions with 0=MTµϑ

. 

In equation (3) we will consider the effects of integrating out 
matter fields. Also we consider flat FRW space-time (K=0) 
with metric, 

ji
ij dxdxtRdtds δ)(222 +−=     … … … (6) 

We have, 
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The Ricci scalar is,     

                                 )2( 2HHR +=      … … … (7) 
With H the Hubble constant .Since we are studying inflation 
we are interested in (quasi) de Sitter solutions with H and R 
constant. In this case the term F(R) vanished from the trace 
equation which then reads, 
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The model 2)( RRf ∝  solves this condition & gives rise to an 
exact de-sitter solution. 
We may consider this is as a correction to Einstein gravity & 
write, 
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Where M is a mass scale .Then at high R-values where the R2-
term dominates we obtain quasi de Sitter expan-
sion 0)(2)( ≈− RfRRF . This is the famous Starobinsky model 
of inflation. During inflation R decreases such that Inflation 
ends when the quadratic term becomes smaller than the linear 
term R ~M2. 
Now we first insert the Starobinsky model and the FRW-
metric in the field equations (3) then we can get the following 
calculation, 
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The first equation is the (0,0)-component which have been in-
serted in the (i, i)-component to obtain the second equation. 
When deriving these equations it is useful to know that the 
FRW-metric yields, 
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As we did earlier, we quantify slow-roll by smallness of the 
Hubble slow-roll parameters, 
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The first two terms in equation (10) may then be neglected. 
From equation (9) we find that 212HR ≈  , hence R  can also be 
neglected. The slow-roll approximation then becomes, 
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The term may readily be integrated to obtain the slow-roll 
solution, 
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Where i denotes the initial conditions .It can be shown that the 
slow-roll trajectory is an attractor in phase space and hence the 
further evolution is largely independent on the Initial condi-
tions, as we discussed in section before. Accelerated expansion 
occurs as long as the slow-roll parameter εH  is smaller than 
unity.         
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Hence inflation occurs for 22 MH > . Inflation ends when εH =1 
i.e. 

6
MH end≅

. It follows that this corresponds to the time at 

which the Ricci scalar decreases to 2~ MR . 
 
II.STAROBINSKY INFLATION IN THE EINSTEIN FRAME 
The f(R) theory, 
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This equation may be cast in a form that features a potential for 
the extra scalar degree of freedom which appeared above. This 
can be done by considering the following linear representation 
in terms of a new field y. 
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We set 0=MTµϑ
 since we will insert the Starobinsky model short-

ly .The equation of motion for y is, 
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Hence we have obtained and action for the scalar degree of 
freedom ψ with potential V ( ψ) which is equivalent to the f (R)-
theory. It appears to have the same form as the non-minimally 
coupled models we considered earlier 
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except that there is no kinetic term. We will discuss similarities 
and differences within the framework of Starobinsky inflation 
shortly. First we proceed by performing a conformal transfor-
mation. To do this it is convenient to reinsert F(R) and write the 
action in the form, 
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Let us briefly repeat the steps of the conformal transformation. 

The metric and Ricci scalar transform as 
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The transformed action then reads, 
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We land in the Einstein frame where the action is linear in R̂  if 
we choose  F=Ω2  
We also see that the action may be canonically normalized by 
the field redefinition, 

FM P ln
2
3

=χ
 

Defining the Einstein frame potential )(χU  as, 
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The action finally takes the form from (20) we get, 
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We may now follow the same steps as earlier, and analyze infla-
tion using the Einstein frame potential within the standard 
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slow-roll paradigm. We proceed by inserting the Starobinsky 
model,                  
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The field redefinition then reads 
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Using this relation, the Einstein frame potential i.e. equation (21) 

becomes 
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Except for the overall coefficient, this is the same as the large 
field limit of the quartic potential with non-minimal coupling.  
The two potentials coincide if we make the identification   

U (χ (φ))   = Ω-4   V (φ)  
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 The two potentials coincide if we make the identification, 
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III.Inflation In the modified Starobinsky Model 
We encode these ideas as deformations of the Starobinsky ac-
tion 
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Where a is now a dimensionless parameter. Now replacing a 
with the dimension full parameter 
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The equivalence between the Starobinsky model and non-
minimally coupled large field φ4 – inflation allows us to map 
the deformed Starobinsky action into the model with potential 

γϕλ 4)(
Λ

 which we considered, 
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                                                                                       … … … (25) 
 

During Inflation the kinetic term (i.e. ϕϕδδ ϑµ
µϑg ) is negligible, 

which as we have seen, corresponds to the large field regime  

ξ
ϕ PM
>>

 with large non-minimal coupling  ξ. The action then 

reads, 
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This is equivalent to the linear representation of the deformed 
Starobinsky action (25) if we make the following identifications, 
 
This is equivalent to the linear representation of the deformed 
Starobinsky action (25) if we make the following identifications, 
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These results are obtained straightforwardly by following the 
steps outlined in comparison with the quartic potential. As we 
have seen ξ is redundant in the linear representation of the Sta-
robinsky model, however we will retain the explicit dependence 
on ξ to ease the comparison between the two models.  
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We consider the action of a scalar field non-minimally coupled 
to gravity: 
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We assume large field, inflationary regime  

ξ
ϕ PM
>>

 

In this regime the non-minimal coupling term flattens the po-
tential to an extent where slow-roll inflation is viable. The field 
redefinition approaches the solution 
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               Φ4 –inflation                 correction from γ 
  
The underbraced ’ 4ϕ -Inflation’-term refers to the potential one 

would obtain by setting γ= 0, that is, non-minimally coupled 
4ϕ -Inflation. As we have seen large field asymptotic flatness of 

this term makes non minimally coupled’ 4ϕ Inflation’ viable. 
However, quantum corrections which we parameterize by may 
spoil this feature of the potential.. 

CONCLUSION 
We considered the Starobinsky model of inflation and described  
how it is connected to matter scalar field models with non-
minimal coupling, and at what level they dier. We considered 
quantum-induced marginal deformations of the Starobinsky 
action, and found that such deformations significantly shift the 
predicted tensor-to-scalar ratio towards higher values. At last 
we discussed sources for these corrections and argued that if 
inflation is driven by an f (R)-theory of gravity 
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               Φ4 –inflation                correction from γ 
  
From the above we see that, when we consider the Starobinsky 
action principle in terms of a field y then we get the Einstein 
frame Potential as the form of equation (i) where there is only 
one exponential part of Positive Square. 
But when we consider a Starobinsky action with a dimension-
less parameter a then we get the equation (ii) where there are 
two exponential part-one is Φ4 –inflation part & other is a cor-
rection part from γ. Here the parameter γ is introduce here by 
using, 

2ln6
P

P M
M

ϕξ
χ =             &             

ξ
ϕ PM
>>  

Which is used in equation (ii). But in equation it appears as,  

)
3

1ln(
2
3

2M
RM P +=χ

 
ie. If we let the field defined with respect to scale ratio (R) then 
we get the Staroibinsky Inflation Model & If we represent χ 
with respect to scalar field (φ) then we get the Starobinsky mod-
ified equation with respect to two exponent parts with inverse 
square. 
This conclude that the Strobinsky & the dis-similarity between 
them & we finally established the equation as the Starobinsky 
modified equation.  
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